Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1951000 | Biochimica et Biophysica Acta (BBA) - Molecular Cell Research | 2010 | 7 Pages |
Quinolinate phosphoribosyl transferase (QPRT) is a key enzyme in de novo NAD+ synthesis. QPRT enzyme activity has a restricted tissue distribution, although QPRT mRNA is expressed ubiquitously. This study was designed to elucidate the functions of QPRT protein in addition to NAD+ synthesis. QPRT was identified as a caspase-3 binding protein using double layer fluorescent zymography, but was not a substrate for caspase-3. Surface plasmon resonance analysis using recombinant proteins showed interaction of QPRT with active-caspase-3 in a dose dependent manner at 55 nM of the dissociation constant. The interaction was also confirmed by immunoprecipitation analysis of actinomycin D-treated QPRT-FLAG expressing cells using anti-FLAG-agarose. QPRT-depleted cells showed increased sensitivity to spontaneous cell death, upregulated caspase-3 activity and strong active-caspase-3 signals. Considered together, the results suggested that QPRT protein acts as an inhibitor of spontaneous cell death by suppressing overproduction of active-caspase-3.