Article ID Journal Published Year Pages File Type
1951104 Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2009 8 Pages PDF
Abstract

Enteroviral infections are associated with type I diabetes. The mechanisms by which viruses or viral products such as double-stranded RNA (dsRNA) affect pancreatic beta cell function and survival remain unclear. We have shown that extracellular dsRNA induces beta cell death via Toll-like receptor-3 (TLR3) signaling whereas cytosolic dsRNA triggers the production of type I interferons and apoptosis via a TLR3-independent process. We presently examined expression of the intracellular viral RNA sensors, the RNA helicases RIG-I and MDA5, and documented the functionality of RIG-I in pancreatic beta cells.FACS-purified rat beta cells and islet cells from wild-type or TLR3−/− mice were cultured with or without the RIG-I-specific ligand 5′-triphosphate single-stranded RNA (5′triP-ssRNA), the synthetic dsRNA polyI:C (PIC) or 5′OH-ssRNA (negative control); the RNA compounds were added in the medium or transfected in the cells using lipofectamine. RIG-I and MDA5 expression were determined by real-time RT-PCR. NF-κB and IFN-β promoter activation were studied in the presence or absence of a dominant-negative form of RIG-I (DN-RIG-I). Both extracellular (PICex) and intracellular (PICin) PIC increased expression of RIG-I and MDA5 in pancreatic beta cells. TLR3 deletion abolished PICex-induced up-regulation of the helicases in beta cells but not in dendritic cells. PICin-induced NF-κB and IFN-β promoter activation were prevented by the DN-RIG-I. The RIG-I-specific ligand 5′triP-ssRNA induced IFN-β promoter activation and beta cell apoptosis. Our results suggest that the RIG-I pathway is present and active in beta cells and could contribute to the induction of insulitis by viral RNA intermediates.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , ,