Article ID Journal Published Year Pages File Type
1951415 Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2007 12 Pages PDF
Abstract

Molecular mechanisms of oncostatin M (OSM)-stimulated cartilage extracellular matrix catabolism and signaling pathways were investigated in human arthritic chondrocytes. OSM, alone or with Interleukin-1 (IL-1β), increased glycosaminoglycan release and induced ADAMTS-4 and MMP-13 protein expression in human cartilage explants. OSM dose- and time-dependently increased ADAMTS-4 mRNA and MMP-13 protein expression in human femoral head chondrocytes. Extracellular signal-regulated kinases (ERK1/2)-MAPK pathway inhibitor, U0126, down-regulated ADAMTS-4 and MMP-13 induction by OSM. Janus kinase 2 (JAK2) inhibitor, AG490, suppressed OSM-induced ADAMTS-4 mRNA expression but did not affect MMP-13 levels while JAK3 pharmacological inhibitor and siRNA transfection suppressed both. Parthenolide, a signal transducer and activator of transcription (STAT1 and STAT3) phosphorylation inhibitor, reduced OSM-induced ADAMTS-4 and MMP-13 gene expression and prevented STAT1/3 DNA binding activity. Additionally, OSM-enhanced ADAMTS-4 mRNA and MMP-13 expression was down-regulated by phosphatidylinositol 3-kinase (PI3K) and Akt/PKB inhibitors, LY294002 and NL-71-101. Furthermore, JAK3 inhibition time-dependently down-regulated Akt but not ERK1/2 phosphorylation suggesting that Akt is a downstream target of JAK3. These results suggest that OSM-stimulated ADAMTS-4 and MMP-13 expression is mediated by ERK1/2, JAK3/STAT1/3 and PI3K/Akt and by cross talk between these pathways. The inhibitors of these cascades could block OSM-evoked degeneration of cartilage by ADAMTS-4 and MMP-13.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , ,