Article ID Journal Published Year Pages File Type
1951945 Biochimie 2016 19 Pages PDF
Abstract

•The multifunctional TRIB3 protein coordinates stress-adaptive mechanisms.•TRIB3 suppresses AKT activation and causes insulin resistance.•TRIB3 causes ubiquitination and proteasomal degradation of client proteins.•TRIB3 expression is dysregulated in different human tumors.•TRIB3 is a biomarker and therapeutic target in metabolic diseases and cancer.

Metabolic diseases like obesity, atherosclerosis and diabetes are frequently associated with increased risk of aggressive cancers. Although metabolic dysfunctions in normal cells are manifested due to defective signaling networks that control cellular homeostasis, malignant cells utilize these signaling networks for their increased survival, growth and metastasis. Despite decades of research, a common mechanistic link between these chronic pathologies is still not well delineated. Evidences show that the unfolded protein response (UPR) and the endoplasmic reticulum stress (ERS) pathways are often dysregulated in both metabolic diseases and cancer. The UPR also triggers coordinated signaling with both PI3K/AKT/mTOR and Autophagy pathways in order to promote stress-adaptive mechanisms. Whereas, uncontrolled UPR and the resultant ERS escalates cells towards metabolic dysfunctions and ultimately cell death. In this review, we will discuss findings that implicate a crucial role for the multifunctional ERS-induced protein, TRIB3. The ‘pseudokinase’ function of TRIB3 facilitates the inactivation of multiple transcription factors and signaling proteins. The MEK1 binding domain of TRIB3 enables it to deactivate multiple MAP-kinases. In addition, the COP1 motif of TRIB3 assists ubiquitination and proteasomal degradation of numerous TRIB3 associated proteins. The most well studied action of TRIB3 has been on the PI3K/AKT/mTOR pathway, where TRIB3-mediated inhibition of AKT phosphorylation decreases insulin signaling and cell survival. Conversely, cancer cells can either upregulate the AKT survival pathway by suppressing TRIB3 expression or alter TRIB3 localization to degrade differentiation inducing nuclear transcription factors such as C/EBPα and PPARγ. The gain-of-function Q84R polymorphism in TRIB3 is associated with increased risk of diabetes and atherosclerosis. TRIB3 acts as a crucial ‘stress adjusting switch’ that links homeostasis, metabolic disease and cancer; and is being actively investigated as a disease biomarker and therapeutic target.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (241 K)Download as PowerPoint slide

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , ,