Article ID Journal Published Year Pages File Type
1952141 Biochimie 2014 5 Pages PDF
Abstract

•Melatonin rescues 3T3-L1 adipocytes from FFA-induced insulin resistance.•Melatonin inhibits FFA-induced phosphorylation of IRS-1 on Ser307.•Melatonin inhibits FFA induced reduction in GLUT-4 leading to enhance glucose uptake.

Melatonin is biosynthesized in the pineal gland and secreted into the bloodstream. Evidences indicate a role of melatonin in the regulation of glucose metabolism. The objective of this study was to investigate the effect of melatonin on insulin sensitivity in insulin resistant adipocytes. Following a preincubation with melatonin or vehicle for 30 min, insulin resistant cells of 3T3-L1 adipocytes were induced by palmitic acids (300 μM, 6 h). Our results showed that palmitic acids inhibited both the basal and insulin-stimulated uptake of [3H]-2-Deoxyglucose, down-regulated the levels of IRS-1 and GLUT-4. However, compared to the vehicle group, melatonin pre-treatment increased significantly the uptake of [3H]-2-Deoxyglucose as well as the level of GLUT-4, and decreased phosphorylated IRS-1 (Ser307) although total IRS-1 did not change significantly. These data suggest that palmitic acids impair insulin signal via down-regulating the expressions of IRS-1 and GLUT-4; whereas melatonin can ameliorate insulin sensitivity by inhibiting Ser307 phosphorylation in IRS-1 and increasing GLUT-4 expressions in insulin resistant 3T3-L1 adipocytes. We conclude that melatonin regulates the insulin sensitivity and glucose homeostasis via inhibiting Ser-phosphorylation and improving function of IRS-1.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , ,