Article ID Journal Published Year Pages File Type
1952240 Biochimie 2010 6 Pages PDF
Abstract

The widespread nature of protein phosphorylation/dephosphorylation underscores its key role in cell signaling metabolism, growth and differentiation. Tyrosine phosphorylation of cytoplasmic proteins is a critical event in the regulation of intracellular signaling pathways activated by external stimuli. An adequate balance in protein phosphorylation is a major factor in the regulation of osteoclast and osteoblast activities involved in bone metabolism. However, although phosphorylation is widely recognized as an important regulatory pathway in skeletal development and maintenance, the mechanisms involved are not fully understood. Among the putative protein-tyrosine kinases (ptk) and protein-tyrosine phosphatases (ptp) involved in this phenomenon there is increasing evidence that Src and low molecular weight-ptps play a central role in a range of osteoblast activities, from adhesion to differentiation. A role for Src in bone metabolism was first demonstrated in Src-deficient mice and has since been confirmed using low molecular weight Src inhibitors in animal models of osteoporosis. Several studies have shown that Src is important for cellular proliferation, adhesion and motility. In contrast, few studies have assessed the importance of the ptk/ptp balance in driving osteoblast metabolism. In this review, we summarize our current knowledge of the functional importance of the ptk/ptp balance in osteoblast metabolism, and highlight directions for future research that should improve our understanding of these critical signaling molecules.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , ,