Article ID Journal Published Year Pages File Type
1952666 Biochimie 2008 11 Pages PDF
Abstract

Neuroblastoma (NB), the most common extracranial solid tumors in children, presents with numerous genetic abnormalities that accumulate in a very short lifetime. To better understand this process, we have induced DNA double-strand breaks in NB cell lines and analyzed the activation of the ATM-H2AX/Chk2-p53 signaling pathway. We have found that NB cells could be classified into two distinct groups. The first group strongly expressed activated Chk2, displayed an important sub-G1 population, expressed very low levels of p21, and exhibited an attenuated G1 arrest. Conversely, the second group weakly expressed Chk2 pT68, displayed no sub-G1 cell population, strongly expressed p21, and exhibited a functional G1 arrest. These findings were independent of the MYCN amplification or p53 status of the NB cell lines tested. Interestingly, most p21 weakly expressing NB cells expressed neuron-specific enolase and Bcl2, two markers of N-type NB cells, but did not express vimentin, a marker of S-type NB cells. The expression profile was reversed in the p21 strongly expressing NB cells which highly expressed vimentin. Along with additional data, our findings lead us to propose that N-type-like NB cells would survive under stress conditions by antagonizing the Chk2-dependent apoptosis pathway, whereas S-type-like NB cells would survive by down-regulating Chk2 expression to facilitate the crossing of the senescence barrier.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , ,