Article ID Journal Published Year Pages File Type
1953112 Biochimie 2007 12 Pages PDF
Abstract

The phosphotriesterase PTE, identified in the soil bacterium Pseudomonas diminuta, is thought to have evolved in the last several decades to degrade the pesticide paraoxon with proficiency approaching the limit of substrate diffusion (kcat/KM of 4 × 107 M−1 s−1). It belongs to the amidohydrolase superfamily, but its evolutionary origin remains obscure. The enzyme has important potentiality in the field of the organophosphate decontamination. Recently we reported on the characterization of an archaeal member of the amidohydrolase superfamily, namely Sulfolobus solfataricus, showing low but significant and extremely thermostable paraoxonase activity (kcat/KM of 4 × 103 M−1 s−1). Looking for other thermostable phosphotriesterases we assayed, among others, crude extracts of Sulfolobus acidocaldarius and detected activity. Since the genome of S. acidocaldarius has been recently reported, we identified there an open reading frame highly related to the S. solfataricus enzyme. The gene was cloned, the protein overexpressed in Escherichia coli, purified, and proven to have paraoxonase activity. A comparative analysis detected some significant differences between the two archaeal enzymes.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , ,