Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1954320 | Biophysical Journal | 2011 | 9 Pages |
We identify a connection between the structural features of mass-action networks and the robustness of their steady-state fluxes against rate constant variations. We find that in all positive steady states of so-called injective networks—networks that arise, for example, in metabolic and gene regulation contexts—there are certain firm bounds on the flux control coefficients. In particular, the control coefficient of the flux of a reaction, with respect to variation in its own rate constant, is delimited in a precise way. Moreover, for each pair of reactions, the flux of at least one of them must have a precisely delimited control coefficient with respect to variation in the rate constant of the other. The derived bounds can, however, be violated in noninjective networks, so for them a more pronounced lack of robustness could be exhibited. These results, which indicate a mechanism by which some degree of robustness is induced in the injective setting, also shed light on how robustness might evolve.