Article ID Journal Published Year Pages File Type
1956338 Biophysical Journal 2008 11 Pages PDF
Abstract

We present the first numerical simulation of actin-driven propulsion by elastic filaments. Specifically, we use a Brownian dynamics formulation of the dendritic nucleation model of actin-driven propulsion. We show that the model leads to a self-assembled network that exerts forces on a disk and pushes it with an average speed. This simulation approach is the first to observe a speed that varies nonmonotonically with the concentration of branching proteins (Arp2/3), capping protein, and depolymerization rate, in accord with experimental observations. Our results suggest a new interpretation of the origin of motility. When we estimate the speed that this mechanism would produce in a system with realistic rate constants and concentrations as well as fluid flow, we obtain a value that is within an order-of-magnitude of the polymerization speed deduced from experiments.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, ,