Article ID Journal Published Year Pages File Type
1957192 Biophysical Journal 2008 10 Pages PDF
Abstract

We derive an analytical model of the potential differences induced across plasma and internal organelle membranes in suspended cells exposed to oscillatory electric fields. Multiple shells are modeled using iterative applications of the single-shell calculation with mobile charges. This work is motivated, in part, by recent results suggesting the ability to use alternating current (ac) fields to noninvasively monitor enzyme activity within internal membranes, particularly the mitochondrial electron transport chain. Previous work, on induced transmembrane voltages in cells subjected to ac fields, has mainly been limited to oscillatory potentials across the plasma membrane. Here we first develop a three-membrane model, consisting of a plasma membrane surrounding inner and outer membranes representing an internal organelle, such as a mitochondrion. Frequency-dependent transmembrane potentials are modeled for spherical, weakly conducting membrane shells enclosing a conductive cytoplasm surrounding an idealized internal organelle. We then use a two-shell model to simulate induced ac membrane potentials of a suspended isolated mitochondrion in which the outer membrane is usually much more permeable than the inner membrane.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , ,