Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1958352 | Biophysical Journal | 2006 | 8 Pages |
A general method to study the phosphate group of phosphoenzymes with infrared difference spectroscopy by helper enzyme-induced isotope exchange was developed. This allows the selective monitoring of the phosphate P-O vibrations in large proteins, which provides detailed information on several band parameters. Here, isotopic exchange was achieved at the oxygen atoms of the catalytically important phosphate group that transiently binds to the sarcoplasmic reticulum Ca2+-ATPase (SERCA1a). [γ-18O3]ATP phosphorylated the ATPase, which produced phosphoenzyme that was initially isotopically labeled. The helper enzyme adenylate kinase regenerated the substrate ATP from ADP (added or generated upon ATP hydrolysis) with different isotopic composition than used initially. With time this produced the unlabeled phosphoenzyme. The method was tested on the ADP-insensitive phosphoenzyme state of the Ca2+-ATPase for which the vibrational frequencies of the phosphate group are known, and it was established that the helper enzyme is effective in mediating the isotope exchange process.