Article ID Journal Published Year Pages File Type
1959535 Biophysical Journal 2005 15 Pages PDF
Abstract

Circadian clocks are important biological oscillators that generally involve two feedback loops. Here, we propose a new model for the Neurospora crassa circadian clock. First, we model its main negative feedback loop, including only experimentally well-documented reactions, the transcriptional activation of frequency (frq) by the white-collar complex (WCC), and the post-transcriptional dimerization of FRQ with WCC. This main loop is sufficient for oscillations and a similar one lies at the core of almost all known circadian clocks. Second, the model is refined to include the less characterized enhancement of white-collar 1 (WC-1) protein synthesis by FRQ, the positive second feedback loop. Numerical testing of different hypotheses led us to propose that the synthesis of WC-1 is enhanced by FRQ monomers and repressed by FRQ dimers. We demonstrate that this second loop contributes significantly to the robustness of the oscillator period against parameter variation. A phase response curve to light pulses is also computed and agrees well with experiments. On a general level, our results show that explicit time delays are not required for sustained oscillations but that it is crucial to take into account mRNA dynamics and protein-protein interactions.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
,