Article ID Journal Published Year Pages File Type
1964267 Cellular Signalling 2007 7 Pages PDF
Abstract

Ionizing radiation elicits signaling events that coordinate DNA repair and interruption of cell cycle progression. We previously demonstrated that ionizing radiation (IR) of cells activates nuclear protein phosphatase-1 (PP1) by promoting dephosphorylation of Thr320, an inhibitory site in the enzyme and that the ATM kinase is required for this response. We sought to identify potential targets of IR-activated PP1. Untreated and IR-treated Jurkat cells were labeled with 32P orthophosphate, and nuclear extracts were subjected to microcystin affinity chromatography to recover phosphatase complexes that were analyzed by 2D-PAGE and mass spectrometry. Several proteins associated with protein phosphatases demonstrated a significant decrease in 32P intensity following IR, and one of these was identified as HDAC1. Co-immunoprecipitation revealed complexes containing PP1 with HDAC1 and Rb in cell extracts. In response to IR, there was an ATM-dependent activation of PP1, dephosphorylation of HDAC1, dissociation of HDAC1–PP1–Rb complexes and increased HDAC1 activity. These results suggest that IR regulates HDAC1 phosphorylation and activity through ATM-dependent activation of PP1.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , ,