Article ID Journal Published Year Pages File Type
1964913 Cellular Signalling 2007 10 Pages PDF
Abstract

We previously identified a critical serine/threonine residue within the linker domain of Smad2/3, phosphorylated by the kinase GRK2 which plays a critical role in regulating Smad signaling. To define the mechanism by which GRK2-mediated phosphorylation modifies Smad2/3 behavior at the molecular level, we generated mutant Smads where the GRK2 phosphorylation site was replaced with an aspartic acid (D) to mimic the properties of a phospho-residue or an alanine (A) as a control. Interestingly, overexpression of either the D or A mutant inhibits TGFβ signaling, but through two distinct mechanisms. The D mutant is properly localized and released from the plasma membrane upon ligand stimulation, but fails to interact with the type I receptor kinase. The A mutant properly interacts with and is phosphorylated by the type I receptor, translocates to the nucleus and homodimerizes with wild-type R-Smads, but it fails to form a heterocomplex with Smad4. As a result, both mutants act as antagonists of endogenous TGFβ signaling through divergent mechanisms. The D mutant acts by blocking endogenous R-Smads phosphorylation and the A mutant acts by preventing endogenous R-Smad/Smad4 heterocomplexes. Thus, mutation of the GRK2 phosphorylation site within the Smad generates dominant negative Smads that efficiently inhibit TGFβ responses.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , ,