Article ID Journal Published Year Pages File Type
1966579 Clinica Chimica Acta 2009 5 Pages PDF
Abstract

BackgroundObesity is a complex multifactorial disorder which needs a comprehensive approach for prevention and treatment. We investigated the modifications in the hypothalamic gene expression induced by high-fat (HF) and low-fat (LF) meal ingestion in mice, in order to identify the signals rapidly mediating the hypothalamic control on energy intake.MethodsAfter fasting, 1 group of mice was sacrificed and the others were fed ad libitum with HF or LF diet, and sacrificed 3 h after the beginning of the meal. The hypothalamus was sampled and the serial analysis of gene expression method was performed.ResultsApproximately 254,588 tags, which correspond to 65,548 tag species were isolated from the 3 groups. The data showed twelve transcripts regulated by food intake. Among these, 2 transcripts have mitochondrial functions (MtCo1, Ppid), 3 are involved in protein transport and regulation (Ube2q2, Mup1, Sec13), 1 in cellular pH control (Slc4a3) and another 1 has a role in the epigenetic control of gene expression (Setd3). In addition, 5 potentially novel transcripts were differentially modulated.ConclusionWe identified genes that may regulate hypothalamic circuits governing the early response to food intake. 3 genes were specifically modulated by high-fat intake.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , ,