Article ID Journal Published Year Pages File Type
1971787 Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 2017 8 Pages PDF
Abstract

The kisspeptin receptor (GPR54) mediates neuroendocrine control of kisspeptin in the brain and acts as a gateway for a pulsatile release of hypothalamic gonadotropin-releasing hormone. This study aimed to clone two GPR54 genes (gpr54-1 and gpr54-2) from the brain of the sapphire devil Chrysiptera cyanea, a tropical damselfish, and to study their involvement in reproduction. The partial sequences of the sapphire devil gpr54-1 cDNA (1059 bp) and gpr54-2 cDNA (1098 bp) each had an open reading frame encoding a protein of 353 and 366 amino acids, respectively, both of which had structural features of a G-protein-coupled receptor. The expression of gpr54-1 mRNA was observed in the diencephalon and telencephalon, and gpr54-2 mRNA was found in the optic tectum of sapphire devil. When gpr54-1 and gpr54-2 mRNA levels were examined in the brain of sapphire devil by real-time quantitative polymerase chain reaction (qPCR), they were found to increase during late vitellogenesis and post-spawning. Treatment of fish with estradiol-17β (Ε2) resulted in an increase in gpr54-1 and gpr54-2 expression in the brain of sapphire devil. Thus, kisspeptin receptors likely mediate the activity of kisspeptin in the brain and are involved in controlling reproductive events in a tropical damselfish.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , ,