Article ID Journal Published Year Pages File Type
1972 Acta Biomaterialia 2008 12 Pages PDF
Abstract

Porous poly(dl-lactide)(PDLLA)/chitosan scaffolds with well-controlled pore structures and desirable mechanical characteristics were fabricated via a combination of solvent extraction, phase separation and freeze-drying. These scaffolds were further evaluated for the proliferation of isolated rabbit chondrocytes in vitro for various incubation periods up to 4 weeks in order to finally use them for the cartilage tissue engineering. MTT assay data revealed that the number of cells grown on PDLLA/chitosan scaffolds measurably increased with the weight ratio of the chitosan component and was significantly higher than those collected from pure PDLLA scaffolds for the entire incubation period. Scanning electron microscopy examinations, histological observations and proteoglycan measurements indicated that the resulting PDLLA/chitosan scaffolds exhibited increasing ability to promote the attachment and proliferation of chondrocytes, and also helped seeded chondrocytes spread through the scaffolds and distribute homogeneously inside compared to pure PDLLA scaffolds. Immunohistochemical staining verified that these PDLLA/chitosan scaffolds could preserve the phenotype of chondrocyte and effectively support the production of type II collagen.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , ,