Article ID Journal Published Year Pages File Type
1975875 Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 2008 9 Pages PDF
Abstract

Insulin-like growth factors (IGFs) I and II (IGF-I and IGF-II) play important roles in fish growth and development. The present study was aimed at isolating cDNAs encoding both IGF-I and IGF-II in the redbanded seabream (Pagrus auriga), and at measuring relative gene expression levels in different organs and during larval development. A fragment of 1321 nucleotides coding for IGF-I was cloned from liver using 3′ and 5′ RACE techniques. It included an open reading frame of 558 nucleotides, encoding a 185-amino acid preproIGF-I. With respect to IGF-II, a fragment of 1544 nucleotides was cloned as well. The open reading frame spanned 648 nucleotides, rendering a 215-amino acid preproIGF-II. The deduced mature 67-amino acid IGF-I and 70-amino acid IGF-II exhibited high sequence identities with their corresponding fish counterparts, ranging between 88.6-100% and 79.1–98.5%, respectively. Real-time PCR showed the highest IGF-I transcripts in liver (∼ 200-fold higher than head-kidney). In contrast, the highest IGF-II mRNAs were detected in gills and heart (∼ 16-fold higher than head-kidney). In addition, both IGFs exhibited different gene expression patterns during larval development suggesting that their expression is developmentally regulated. IGF-I reached the highest expression levels at 18 days after hatching (11.6-fold higher than 1 day after hatching), whereas IGF-II expression did not change significantly. Both hepatic IGF-I and IGF-II mRNA levels increased sharply (3.1- and 19-fold higher than control, respectively) 3 h after injection of porcine growth hormone, but remained unchanged from 6 to 24 h after treatment. Our results are discussed in relation to those previously reported for other bony fish.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , ,