Article ID Journal Published Year Pages File Type
1976779 Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 2007 10 Pages PDF
Abstract

Equine (Equus caballus) deoxyribonuclease I (DNase I) was purified from the parotid gland, and its 1295-bp cDNA was cloned. The mature equine DNase I protein consisted of 260 amino acid residues. The enzymatic properties and structural aspects of the equine enzyme were closely similar to those of other mammalian DNases I. Mammalian DNases I are classified into three types — pancreatic, parotid and pancreatic–parotid-based on their tissue distribution; as equine DNase I showed the highest activity in the parotid gland, it was confirmed to be of the parotid-type. Comparison of the susceptibility of mammalian DNases I to proteolysis by proteases demonstrated a marked correlation between tissue distribution and sensitivity/resistance to proteolysis; pancreatic-type DNase I shared properties of resistance to proteolysis by trypsin and chymotrypsin, whereas parotid-type DNase I did not. In contrast, pancreatic–parotid-type DNase I exhibited resistance to proteolysis by pepsin, whereas the other enzyme types did not. However, site-directed mutagenesis analysis revealed that only a single amino acid substitution could not account for acquisition of proteolysis resistance in the mammalian DNase I family during the course of molecular evolution. These properties are compatible with adaptation of mammalian DNases I for maintaining their activity in vivo.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , , , ,