Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1977217 | Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology | 2015 | 11 Pages |
Abstract
Metal pollution from anthropogenic inputs is a concern in many marine environments. Metals accumulate in tissue and in excess cause toxicity in marine organisms. This study investigated the accumulation and effects of dietary metals in a macroinvertebrate. The green seaweed, Ulva lactuca and the red seaweed, Agardhiella subulata were each concurrently exposed to two concentrations (100 or 1000 μg/L) of five metals (Cu, Ni, Pb, Cd, and Zn). Additionally, U. lactuca was exposed to 10 μg/L of the metal mixture as well as 10 or 100 μg/L of each metal individually for 48 h. The seaweeds were then used as food for the sea hare, Aplysia californica for two to three weeks depending on the exposure concentration. Body mass of A. californica was measured weekly, and at the end of the exposure duration, metal concentrations were quantified in dissected organs (mouth, esophagus, crop, gizzard, ovotestis, heart, hepatopancreas, gill, and the carcass). Metal distribution and accumulation in the organs of A. californica varied with the metal. A. californica fed the metal-exposed diets had significantly reduced body weight by the end of the exposure periods, as compared to controls; however, differences were observed in the extent of growth reductions, dependent on exposure concentration, duration, and exposure regime (metal mixture versus individual metal-exposed diet). Metal mixture diets decreased A. californica growth more so than comparable individual metal diets, despite more metal accumulating in the individual metal diets. Additionally, Zn- and Cu-contaminated algal diets decreased control-normalized growth of A. californica significantly more than comparable Cd-, Pb-, or Ni-contaminated diets. The seaweed diets in this study contained environmentally relevant tissue metal burdens. Therefore, these results have implications for metals in marine systems.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Tayler A. Jarvis, Thomas R. Capo, Gretchen K. Bielmyer-Fraser,