Article ID Journal Published Year Pages File Type
1978941 Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 2007 16 Pages PDF
Abstract
The potential of a variety of xenobiotic compounds to modulate or disrupt the endocrine system of humans and wildlife is now widely recognized. In the present study, we developed a molecular tool for the evaluation of endocrine disruption in common carp (Cyprinus carpio). Suppression Subtractive Hybridization PCR was applied for the isolation of a relevant gene set, consisting of gender- and hormone-responsive gene fragments. This resulted in 398 different gene fragments that were most related to endocrine functioning. To investigate the applicability of this gene collection for studying endocrine disruption in fish, the gender-related genes were spotted on a cDNA macroarray, and expression profiles were generated for 17β-estradiol (E2) and cortisol. Therefore, fish were injected with these hormones, and after 24 h and 96 h RNA was extracted and used for macroarray hybridizations. E2 exposure resulted in a total of 35 differentially expressed genes, whereas cortisol only affected 3 genes spotted on the macroarray. These results indicate the discriminating power of the developed array, and its usefulness to describe the toxicological mode of action of endocrine disruptive chemicals.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , ,