Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1980096 | DNA Repair | 2015 | 11 Pages |
•Ap4A increases in cells exposed to sublethal DNA damage.•Ap4A is also increased in DNA repair mutants.•DNA ligase III is implicated as the major source of this nucleotide.•Ap4A can be ADP-ribosylated in vivo.•Ap4A inhibits DNA replication initiation but not elongation.
The level of intracellular diadenosine 5′, 5′′′-P1,P4-tetraphosphate (Ap4A) increases several fold in mammalian cells treated with non-cytotoxic doses of interstrand DNA-crosslinking agents such as mitomycin C. It is also increased in cells lacking DNA repair proteins including XRCC1, PARP1, APTX and FANCG, while >50-fold increases (up to around 25 μM) are achieved in repair mutants exposed to mitomycin C. Part of this induced Ap4A is converted into novel derivatives, identified as mono- and di-ADP-ribosylated Ap4A. Gene knockout experiments suggest that DNA ligase III is primarily responsible for the synthesis of damage-induced Ap4A and that PARP1 and PARP2 can both catalyze its ADP-ribosylation. Degradative proteins such as aprataxin may also contribute to the increase. Using a cell-free replication system, Ap4A was found to cause a marked inhibition of the initiation of DNA replicons, while elongation was unaffected. Maximum inhibition of 70–80% was achieved with 20 μM Ap4A. Ap3A, Ap5A, Gp4G and ADP-ribosylated Ap4A were without effect. It is proposed that Ap4A acts as an important inducible ligand in the DNA damage response to prevent the replication of damaged DNA.