Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1980607 | DNA Repair | 2011 | 9 Pages |
Abstract
The efficiency and fidelity of nucleotide incorporation and next-base extension by DNA polymerase (pol) κ past N2-ethyl-Gua were measured using steady-state and rapid kinetic analyses. DNA pol κ incorporated nucleotides and extended 3Ⲡtermini opposite N2-ethyl-Gua with measured efficiencies and fidelities similar to that opposite Gua indicating a role for DNA pol κ at the insertion and extension steps of N2-ethyl-Gua bypass. The DNA pol κ was maximally activated to similar levels by a twenty-fold lower concentration of Mn2+ compared to Mg2+. In addition, the steady state analysis indicated that high fidelity DNA pol κ-catalyzed N2-ethyl-Gua bypass is Mg2+-dependent. Strikingly, Mn2+ activation of DNA pol κ resulted in a dramatically lower efficiency of correct nucleotide incorporation opposite both N2-ethyl-Gua and Gua compared to that detected upon Mg2+ activation. This effect is largely governed by diminished correct nucleotide binding as indicated by the high Km values for dCTP insertion opposite N2-ethyl-Gua and Gua with Mn2+ activation. A rapid kinetic analysis showed diminished burst amplitudes in the presence of Mn2+ compared to Mg2+ indicating that DNA pol κ preferentially utilizes Mg2+ activation. These kinetic data support a DNA pol κ wobble base pairing mechanism for dCTP incorporation opposite N2-ethyl-Gua. Furthermore, the dramatically different polymerization efficiencies of the Y-family DNA pols κ and ι in the presence of Mn2+ suggest a metal ion-dependent regulation in coordinating the activities of these DNA pols during translesion synthesis.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Matthew G. Pence, Patrick Blans, Charles N. Zink, James C. Fishbein, Fred W. Perrino,