Article ID Journal Published Year Pages File Type
1983269 The International Journal of Biochemistry & Cell Biology 2016 11 Pages PDF
Abstract

Diacylglycerol (DAG), a second messenger involved in different cell signaling cascades, activates protein kinase C (PKC) and D (PKD), among other kinases. The present work analyzes the effects resulting from the alteration of DAG levels on neuronal and muscle nicotinic acetylcholine receptor (AChR) distribution. We employ CHO-K1/A5 cells, expressing adult muscle-type AChR in a stable manner, and hippocampal neurons, which endogenously express various subtypes of neuronal AChR. CHO-K1/A5 cells treated with dioctanoylglycerol (DOG) for different periods showed augmented AChR cell surface levels at short incubation times (30 min–4 h) whereas at longer times (18 h) the AChR was shifted to intracellular compartments. Similarly, in cultured hippocampal neurons surface AChR levels increased as a result of DOG incubation for 4 h. Inhibition of endogenous DAG catabolism produced changes in AChR distribution similar to those induced by DOG treatment. Specific enzyme inhibitors and Western blot assays revealed that DAGs exert their effect on AChR distribution through the modulation of the activity of classical PKC (cPKC), novel PKC (nPKC) and PKD activity.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (177 K)Download as PowerPoint slide

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , ,