Article ID Journal Published Year Pages File Type
1983429 The International Journal of Biochemistry & Cell Biology 2015 12 Pages PDF
Abstract

MicroRNAs are a class of small non-coding RNAs regulating gene expression. In this study, we demonstrated that retinoic acid (RA) treatment increases the expression of miR-512-3p. Overexpression of miR-512-3p inhibited cell adhesion, migration, and invasion in non-small cell lung cancer (NSCLC) cell lines A549 and H1299. miR-512-3p inhibitor partially reversed these effects in H1299 cells stably expressing miR-512. We identified DOCK3, a RAC1-GEF (guanine nucleotide exchange factor), as a target gene of miR-512-3p. Overexpression of miR-512-3p led to the decrease of DOCK3 protein but not its mRNA. Knockdown of DOCK3 resulted in similar effects on adhesion, migration, and invasion as observed of miR-512-3p overexpression. Active RAC1 pull-down assay indicated that overexpression of miR-512-3p could decrease the activity of RAC1 with a higher efficiency than that of DOCK3 knockdown. Furthermore, expression of miR-512-3p was suppressed in most NSCLC patient tumor samples compared to its paired normal controls, suggesting that miR-512-3p might play a crucial role in lung cancer development. In conclusion, our results supported that miR-512-3p could inhibit tumor cell adhesion, migration, and invasion by regulating the RAC1 activity via DOCK3 in NSCLC A549 and H1299 cell lines.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , , , ,