Article ID Journal Published Year Pages File Type
1983469 The International Journal of Biochemistry & Cell Biology 2015 11 Pages PDF
Abstract
Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) is triggered by BCR/ABL and SRC family tyrosine kinases. They interact with each other and subsequently activate downstream growth-signaling pathways, including Raf/MEK/ERK, Akt/mTOR, and STAT5 pathways. Although imatinib is the standard treatment for Ph+ leukemia, response rate of Ph+ ALL to imatinib is low, relapse is frequent and quick. Studies have documented the potential anti-tumor activities of curcumin. However, whether curcumin can be used in the therapy for Ph+ ALL remains obscure. Here, we reported that curcumin induced apoptosis by inhibition of AKT/mTOR and ABL/STAT5 signaling, down-regulation of BCR/ABL expression, and induction of the BCL2/BAX imbalance. Curcumin exerted synergetic anti-leukemia effects with imatinib by inhibition of the imatinib-mediated overactivation of AKT/mTOR signaling and down-regulation of BCR/ABL gene expression. In primary samples from Ph+ ALL patients, curcumin inhibited cellular proliferation and down-regulated constitutive activation of growth-signaling pathways not only in newly diagnosed patients but also in imatinib-resistant patients. In Ph+ ALL mouse models, curcumin exhibited synergetic anti-leukemia effects with imatinib. These results demonstrated that curcumin might be a promising agent for Ph+ ALL patients.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , ,