Article ID Journal Published Year Pages File Type
1983544 The International Journal of Biochemistry & Cell Biology 2014 14 Pages PDF
Abstract

Genomic DNA in eukaryotic cells is basically divided into chromosomes, each consisting of a single huge nucleosomal fiber. It is now clear that chromatin structure and dynamics play a critical role in all processes involved in DNA metabolism, e.g. replication, transcription, repair and recombination. Radiation is a useful tool to study the biological effects of chromatin alterations. Conversely, radiotherapy and radiodiagnosis raise questions about the influence of chromatin integrity on clinical features and secondary effects. This review focuses on the link between DNA damage and chromatin structure at different scales, showing how a comprehensive multiscale vision is required to understand better the effect of radiations on DNA. Clinical aspects related to high- and low-dose of radiation and chromosomal instability will be discussed. At the same time, we will show that the analysis of the radiation-induced DNA damage distribution provides good insight on chromatin structure. Hence, we argue that chromatin “structuralists” and radiobiological “clinicians” would each benefit from more collaboration with the other. We hope that this focused review will help in this regard.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, ,