Article ID Journal Published Year Pages File Type
1983726 The International Journal of Biochemistry & Cell Biology 2013 7 Pages PDF
Abstract

•GEN effects on mitochondrial function were studied in breast cancer cells.•GEN decreases oxidative stress according to ERα/ERβ ratio.•Sirtuins and UCP2 were up-regulated in GEN-treated cells with lowest ERα/ERβ ratio.•GEN treatment increases ERβ levels which in turn amplify the GEN effects.

Genistein is a biologically active isoflavone with estrogenic activity and can be found in a variety of soy products. This natural compound displays a wide array of biological activities, but it is best known for its ability to inhibit cancer progression, especially for hormone-related ones such as breast cancer. Genistein has been shown to bind both the estrogen receptor alpha (ERα) and the estrogen receptor beta (ERβ), although it has a higher affinity for the ERβ. The ERα/ERβ ratio is a prognostic marker for breast tumors, and ERβ expression could indicate the presence of tumors more benign in state, whereas ERα indicates malignant tumors. The objective of the present study was to investigate the effects of genistein on oxidative stress and mitochondrial functionality through its interaction with the estrogen receptor in breast cancer cell lines with different ERα/ERβ ratios. The lower ERα/ERβ ratio T47D cell line showed lower oxidative stress and greater mitochondrial functionality, along with an up-regulation of uncoupling protein 2 and sirtuins. On the other hand, genistein-treated MCF-7 cell line, with the highest ERα/ERβ ratio, reported no changes for the control situation. On the whole, our results show different genistein effects depending on ERα/ERβ ratio for oxidative stress regulation, mitochondrial functionality, and modulation of UCPs, antioxidant enzymes and sirtuins in breast cancer cell lines. Effects of genistein on oxidative stress and mitochondria could be due at least in part, to a higher ERβ presence, but could also be due to up-regulation of ERβ caused by the genistein treatment.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , ,