Article ID Journal Published Year Pages File Type
1984926 The International Journal of Biochemistry & Cell Biology 2009 7 Pages PDF
Abstract

Vascular smooth muscle cell (VSMC) invasion is a key element in atherogenesis and restenosis, requiring integrins for adhesion/de-adhesion as well as matrix metalloproteinases (MMPs) for focalized proteolysis. Among the MMP family, pro-MMP-2 is unique in its activation, depending on the formation of a multiprotein complex with MT1-MMP/TIMP-2 at the cell surface, in which integrin αvβ3 participates. Integrin αv and MT1-MMP are synthesized from precursors via furin-dependent cleavage of their pro-peptide. Furin is the prototypical proprotein convertase highly expressed in VSMCs and human atherosclerotic lesions. Its precise role in the tight network involving MMPs/integrins and their coordination and cooperation required for VSMC invasion is unknown. We demonstrate that furin-inhibition with decanoyl-RVKR-chloromethylketone inhibits VSMC invasion in a comparable degree to MMP inhibitors, which reduce the MT1-MMP–MMP-2 proteolytic cascade. Furin-inhibition did not prevent MT1-MMP/MMP-2 maturation. In contrast, it strongly reduced pro-αv cleavage, but did not lessen its cell membrane expression. However, inhibition of pro-αv processing via furin-inhibition strongly reduced pro-MMP-2 binding to the cell surface, thereby lessening its full maturation and diminishing the cell surface in situ proteolysis required for invasion. Thus, our data demonstrate a novel mechanism of furin-dependent αv cleavage that enhances pro-MMP-2 binding and activation at the cell membrane in cooperation with MT1-MMP in primary VSMCs. Processing of αv by furin contributes to the recruitment of enzymatic energy to the cell surface, thereby providing focalized proteolysis associated with VSMC invasion.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , , , ,