Article ID Journal Published Year Pages File Type
1986304 International Journal of Biological Macromolecules 2014 7 Pages PDF
Abstract

Herein, C16 alkyl chain-grafted-xanthan copolymer was synthesized and characterized. The copolymer self-assembled into nanometer-size spherical micellar structures in water and incorporated ∼100% glibenclamide into its deeper lipophilic confines. The micellar dispersion exhibited negative zeta potential value (−27.6 mV). The copolymer micelles controlled the drug release rate in phosphate buffer solution (pH 6.8) for an extended period. Further incorporation of drug-loaded copolymer micelles into O-carboxymethyl xanthan hydrogel particles slowed the drug release rate in HCl solution (pH 1.2) as well as in phosphate-buffered solution (pH 6.8) (releasing only ∼8% drug in 2 h). The drug release data correlated well with the degree of swelling of the hydrogel particles in different drug release media. Scanning electron microscopy revealed spherical shape of the hydrogel particles (600 μm). X-ray diffraction and Fourier transform infrared (FTIR) spectroscopy analyses suggested amorphous encapsulation of the drug and its chemical compatibility with the polymers, respectively. Pharmacodynamic evaluation suggested that the formulations had an immense potential in controlling blood glucose level in animal model over a longer duration. In summary, it was pointed out that the copolymer micelles of glibenclamide, a poor water-soluble anti-diabetic, and their subsequent entrapment into hydrogel particles could be a promising approach in the controlled and effective management of diabetes.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, ,