Article ID Journal Published Year Pages File Type
1986442 International Journal of Biological Macromolecules 2014 6 Pages PDF
Abstract

Novel platforms based on the application of bacterial cell systems as factories for production of new bioproducts open avenues and dramatically expand the catalogue of existing biomaterials. Herein, we designed the strategy based on in vivo production of extracellular Pseudomonas fluorescens GK13 (PhaZGK13) depolymerase to degrade previously biosynthesized polyhydroxyalkanotes (PHAs) or to obtain 3-hydroxyalkanoic acids (HAs). With this aim, extracellular PhaZGK13 was produced in recombinant strains and the optimal conditions for controlled release of HAs and oligomers by growing cells were set up with a particle suspension of 14C-labelled PHA, being maximal after 24 h of incubation. Genetic modification of key factors involved in fatty acids metabolism revealed the influence of an active β-oxidation pathway on the extracellular degradation of PHA and subsequent HAs isolation. The highest HAs production was obtained using Pseudomonas putida KT2442 fadB mutant (0.27 mg/mL) due to the reduced ability of this strain to metabolize the degradation products. The system was applied to produce new added value HAs harboring thioester groups in the side chain from the functionalized mcl-PHA, PHACOS. Remarkably, hydrolyzed PHACOS showed greater potential to inhibit Staphylococcus aureusT growth when compared to that of degradation products of non functionalized polyhydroxyoctanoate-co-hexanoate P(HO-co-HH).

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , ,