Article ID Journal Published Year Pages File Type
1986511 International Journal of Biological Macromolecules 2014 7 Pages PDF
Abstract

A new in situ precipitation technique was developed to synthesize collagen-silk fibroin/hydroxyapatite nanocomposites. The componential properties and morphological of nanocomposites were investigated. It was revealed that the inorganic phase in the nanocomposite was carbonate-substituted hydroxyapatite with low crystallinity. Morphology studies showed that hydroxyapatite particles with size ranging from 30 to 100 nm were distributed uniformly in the polymer matrix. According to the TEM micrographs, inorganic particles were composed of more fine sub-particles whose diameters were between 2 and 5 nm in size without regular crystallographic orientation. The mechanical properties of the composites were evaluated by measuring their elastic modulus. The data indicated that the elastic modulus of nanocomposites was improved by the addition of silk fibroin. Finally, the cell biocompatibility of the composites was tested in vitro, which showed that they have good biocompatibility. These results suggest that the collagen-silk fibroin/hydroxyapatite nanocomposites are promising biomaterials for bone tissue engineering.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , ,