Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1987517 | International Journal of Biological Macromolecules | 2010 | 7 Pages |
The combination of gelatin (Gel) with a bioactive component hydroxyapatite (HA) and cartilage powder (CP) to form biocomposites takes advantage of the osteoconductivity and osteoinductivity properties. The studies on bionanocomposites containing HA, CP fillers and Gel are still being conducted. In this present study, the bioactive fillers were loaded onto poly(hydroxylethylmethacrylate) and poly(hydroxylethylmethacrylate-co-methyl methacrylate) grafted gelatin copolymers to produce novel bionanocomposites having osteoconductive and osteoinductive properties. The resulting bionanocomposites were assessed by ATR-IR and SEM-EDX techniques to prove the interaction between different matrices. In vitro behavior of these bionanocomposites was performed in SBF for 21 days at pH 7.4 to verify formation of the apatite layer on the surfaces and its enhancement. The results confirmed the formation of thick plentiful aggregated (hexagonal or spherical) nanoparticles with a bright color (apatite layer) containing carbonate ions onto the surface of composites especially these containing CP and P(HEMA-co-MMA) having bone cement formation in their structure. These novel bionanocomposites have unique bioactivity that can be applied in bone implants as scaffolds and tissue engineering in future.