Article ID Journal Published Year Pages File Type
1988274 International Journal of Biological Macromolecules 2007 7 Pages PDF
Abstract

The dogfish egg case is a composite structure that combines mechanical tensile strength, toughness and elasticity with high permeability to small molecules and ions. Presumably, it provides both a protective and a filtering role for the egg/embryo contained within it. In this work, we performed structural studies of the Galeus melastomus egg case at two different stages of the hardening process, utilizing ATR FT-IR and FT-Raman spectroscopy. Based on these data we deduce that: (a) The G. melastomus egg case, in close analogy to that of the related species Scyliorhinus cunicula, is a complex, composite structure which consists mainly of an analogue of collagen IV. This network forming protein appears to have common secondary structural characteristics in the entire egg case. (b) The outermost layer of the non-sclerotized egg case is especially rich in tyrosine, while the innermost layer is rich in polysaccharides, presumably glycosaminoglycans, and lipids. These differences are diminished upon hardening. (c) Disulfide bonds do not appear to play a significant role in cross-linking. However, cross-links involving tyrosine residues appear to sclerotize the egg case. It is proposed that the intensity of the Raman band at ca. 1615 cm−1, which is due to ring stretching vibrations of Tyr, might be a useful indicator of the sclerotization status of a certain proteinaceous tissue, when tyrosines are involved in sclerotization mechanisms.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , ,