Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1988324 | International Journal of Biological Macromolecules | 2007 | 6 Pages |
The purpose of this paper was to investigate the possibility of developing a polymeric nanoparticle delivery system for ORI to increase its solubility, blood circulation time and tissue targeting. Oridonin-loaded poly(d,l-lactic acid) nanoparticles (ORI-PLA-NP) were prepared by the further modified spontaneous emulsion solvent diffusion (MSESD) method. Studies were carried out to characterize and evaluate the produced ORI-PLA-NP both in vitro and in vivo. The experimental results showed that the mean size of the nanoparticles were 137.3 nm, with 87.2% of the nanoparticles distributed between the range of 107 and 195 nm. The entrapment efficiency and actual drug loading of the nanoparticles were 91.88 ± 1.83 and 2.32 ± 0.05%, respectively. It was demonstrated by differential scanning calorimetry (DSC) and X-ray diffractometry (XRD) that ORI existed in the form of amorphous in the nanoparticles. The in vitro release profile of ORI-PLA-NP could be expressed well by the Higuchi equation: Q = 8.944t1/2 + 11.246. The results of pharmacokinetics demonstrated that being encapsulated in PLA nanoparticles was remarkably effective for ORI to prolong its blood circulation time. After the i.v. administration of ORI-PLA-NP, we could observe a stable and high concentration of ORI in liver, lung and spleen, while its distribution in heart and kidney decreased.