Article ID Journal Published Year Pages File Type
1990643 The Journal of Nutritional Biochemistry 2011 11 Pages PDF
Abstract

Oxidative stress induced neuronal cell death by accumulation of β-amyloid (Aβ) is a critical pathological mechanism of Alzheimer's disease (AD). Intracerebroventrical infusion of Aβ1-42 (300 pmol/day per mouse) for 14 days induced neuronal cell death and memory impairment, but pre-treatment of 4-O-methylhonokiol (4-O-MH), a novel compound extracted from Magnolia officinalis for 3 weeks (0.2, 0.5 and 1.0 mg/kg) prior to the infusion of Aβ1-42 and during the infusion dose dependently improved Aβ1-42-induced memory impairment and prevented neuronal cell death. Additionally, 4-O-MH reduced Aβ1-42 infusion-induced oxidative damages of protein and lipid but reduced glutathione levels in the cortex and hippocampus. Aβ1-42 infusion-induced activation of astrocytes and p38 mitogenic activated protein (MAP) kinase was also prevented by 4-O-MH in mice brains. In further study using culture cortical neurons, p38 MAP kinase inhibitor abolished the inhibitory effect of 4-O-MH (10 μM) on the Aβ1-42 (5 μM)-induced reactive oxidative species generation and neuronal cell death. These results suggest that 4-O-MH might prevent the development and progression of AD through the reduction of oxidative stress and neuronal cell death via inactivation of p38 MAP kinase pathway.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , , , , , ,