Article ID Journal Published Year Pages File Type
1990850 The Journal of Nutritional Biochemistry 2010 7 Pages PDF
Abstract

Whether preformed dietary docosahexaenoic acid (DHA) is required for brain accretion has not been clearly determined. In this study, we investigated in mice the different effects of dietary longer-chain n-3 polyunsaturated fatty acids (PUFAs) and α-linolenic acid (LNA) on brain accretion of DHA and the expression of associated desaturases and transcription factors. C57 BL/6J mice were fed for 3 months with four fish oil n-3 PUFA diets — lower, low, high and higher (0.46%, 0.91%, 1.73% and 4.29% total energy, respectively); a flaxseed oil n-3 PUFA (5.01% total energy) diet; and an n-3 PUFA-deficient diet, respectively. Either fish oil or flaxseed oil n-3 PUFA diets increased DHA concentrations in the brain. However, the flaxseed oil n-3 PUFA diet was less effective than the fish oil diet with higher amount of n-3 PUFA in increasing brain DHA content. Furthermore, the expressions of delta-6 desaturase (D6D) and sterol regulatory element binding protein 1 (SREBP-1) in the liver were down-regulated by all fish oil diets with different amounts of n-3 PUFAs, as well as by the flaxseed oil n-3 PUFA diet, whereas in the brain, D6D, delta-5 desaturase (D5D) and SREBP-1 expressions were down-regulated by the higher fish oil n-3 PUFA diet rather than by other fish oil n-3 PUFA and the flaxseed oil n-3 PUFA diets. These results suggest that preformed dietary DHA, different from those converted by LNA inside the body, is better for brain accretion. Dietary longer-chain n-3 PUFAs affect expressions of D6D, D5D and SREBP-1 in the brain differently from their precursor LNA.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , ,