Article ID Journal Published Year Pages File Type
1991401 The Journal of Steroid Biochemistry and Molecular Biology 2015 11 Pages PDF
Abstract

•The predominant activity on progesterone in developing lungs is 20α-HSD.•DOC and corticosterone synthesis was observed in specific situations.•Our data are compatible with an intracrine action of glucocorticoids.

Glucocorticoids (GCs) are important regulators of lung development. The genes normally involved in GC synthesis in adrenals are co-expressed with 20α-hydroxysteroid dehydrogenase (20α-HSD) in the developing lung. In this study, C21-steroid metabolism was investigated in fetal and postnatal mouse lungs. Incubation of [3H]-progesterone with lung explant cultures of different perinatal developmental time points revealed two different (antenatal vs. postnatal) complex metabolization patterns. Progesterone inactivation was predominant. 20αOH-derivatives were more abundant after birth and some metabolites were 5α-reduced. Using [3H]-progesterone as substrate, corticosterone synthesis was only observed in a fraction of lung explants from gestation day (GD) 15.5. Neither aldosterone synthase nor P450c17 activity was observed. With epithelial-enriched primary cell cultures, deoxycorticosterone synthesis from [3H]-progesterone was observed. With lung explants incubated with [3H]-corticosterone as substrate, [3H]-4-pregnen-21-ol-3,11,20-trione (11-dehydrocorticosterone), the product of 11β-HSD2, accumulated in higher proportion on GD 15.5 than at later developmental time points. The temporal correlation observed between levels of progesterone inactivation by 20α-HSD (higher after birth) and the sensitivity of lung development to GCs suggests a role for 20α-HSD in the modulation of GR occupancy through the control of 21-hydroxylase substrate and product levels. In conclusion, the developing lung is characterized by effective inactivation of c21-steroids by 20α-HSD. The formation of active GCs from the “adrenal”-like pathway was observed with some lung explants and primary epithelial cell cultures. Coexistence of this GC synthesis pathway with 20α-HSD activity strongly suggests local regulation of GC action and is compatible with intracrine/paracrine actions of GC.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , ,