Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1991688 | The Journal of Steroid Biochemistry and Molecular Biology | 2011 | 6 Pages |
The study subject was a 13 day-old boy admitted to hospital, with weight loss since birth. He presented with the vomiting and hypotension that are classical features of congenital adrenal hyperplasia (CAH). The most common type of CAH is an autosomal recessive disorder caused by mutations in the 21-hydroxylase (CYP21A2) gene. To examine the CYP21A2 gene, gene-specific PCR was carried out, followed by sequencing. The baby was shown to be a compound heterozygote H365Y/R356W for two CYP21A2 gene mutations each inherited from a different parent. One of the mutations has not previously been functionally characterised. The mutations were reconstructed in an expression plasmid and characterised in vitro after transient transfection into human embryonic kidney (HEK293T) and hepatoblastoma (C3A) cell lines followed by measurement of enzyme activity. The CYP21A2 H365Y mutant exhibited minimal 21-hydroxylase activity to convert 17-hydroxyprogesterone to 11-deoxycortisol or progesterone to 11-deoxycorticosterone. Western immunoblotting indicated that the H365Y enzyme was produced in more variable amounts than wild type; in particular, the H365Y mutant protein may be unstable and/or subject to a more rapid degradation by the human proteosome as well as catalytically inefficient. The double mutant genotype with a severe mutation on each allele is compatible with the clinical presentation.
Research highlights▶ CAH is an autosomal recessive disorder usually caused by mutations in CYP21A2 gene. ▶ We found a new mutation, H365Y, and characterised it using in vitro transfection assays. ▶ H356Y mutation was found to affect both activity and stability of enzyme. ▶ The in vitro results were compatible with the severe phenotype (salt wasting).