Article ID Journal Published Year Pages File Type
1994487 Methods 2007 5 Pages PDF
Abstract
Well-known coronary risk factors such as hyperlipidemia, hypertension, smoking, and diabetes are reported to induce the oxidative stress. Under the oxidative stress, low-density lipoprotein (LDL) is oxidatively modified in the vasculature, and formed oxidized LDL induces endothelial dysfunction, expression of adhesion molecules and apoptosis of vascular smooth muscle cells. It has become evident that these cellular responses induced by oxidized LDL are mediated by lectin-like oxidized LDL receptor-1 (LOX-1). LOX-1 was originally identified from cultured aortic endothelial cells as a receptor for oxidized LDL; however, recent investigations revealed that LOX-1 has diverse roles in the host-defense system and inflammatory responses, and it is involved in the pathogenesis of various diseases such as atherosclerosis-based cardiovascular diseases and septic shock. Beside oxidized LDL, LOX-1 recognizes multiple ligands including apoptotic cells, platelets, advanced glycation end products, bacteria, and heat shock proteins (HSPs). The HSPs function as a chaperone to affect protein folding of newly synthesized or denatured proteins. There are accumulating evidences that the HSPs released into the extracellular space have potent biological activities and it may work as a kind of cytokines. It is demonstrated that LOX-1 works as a receptor for HSP70, since it has high affinity for HSP70. The interaction of LOX-1 with HSP70 is involved in the cross-presentation of antigen. Given the potent and wide variety of biological activities, more understanding their interaction provides potential therapeutic strategy for various human diseases.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, ,