Article ID Journal Published Year Pages File Type
1994827 Microvascular Research 2015 14 Pages PDF
Abstract
Arachidonic acid (AA), a bioactive fatty acid whose levels increase during neuroinflammation, contributes to cerebral vascular damage and dysfunction. However, the mode of injury and underlying signaling mechanisms remain unknown. Challenge of primary human brain endothelial cells (HBECs) with AA activated a stress response resulting in caspase-3 activation, poly(ADP-ribose) polymerase cleavage, and disruption of monolayer integrity. AA also induced loss of mitochondrial membrane potential and cytochrome c release consistent with activation of intrinsic apoptosis. HBEC stimulation with AA resulted in sustained p38-MAPK activation and subsequent phosphorylation of mitogen-activated protein kinase activated protein-2 (MAPKAP-2) kinase and heat shock protein-27 (Hsp27). Conversely, other unsaturated and saturated fatty acids had no effect. Pharmacological and RNA interference-mediated p38α or p38β suppression abrogated AA signaling to caspase-3 and Hsp27, suggesting involvement of both p38 isoforms in AA-induced HBEC apoptosis. Hsp27 silencing also blocked caspase-3 activation. AA stimulated intracellular calcium release, which was attenuated by inositol 1,4,5-trisphosphate (IP3) receptor antagonists. Blockade of intracellular calcium release decreased caspase-3 activation, but had no effect on AA-induced p38-MAPK activation. However, inhibition of p38-MAPK or blockade of intracellular calcium mobilization abrogated AA-induced cytochrome c release. AA-induced caspase-3 activation was abrogated by pharmacological inhibition of lipooxygenases. These findings support a previously unrecognized signaling cooperation between p38-MAPK/MAPKAP-2/Hsp27 and intracellular calcium release in AA-induced HBEC apoptosis and suggest its relevance to neurological disorders associated with vascular inflammation.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , , , ,