Article ID Journal Published Year Pages File Type
1995404 Microvascular Research 2006 7 Pages PDF
Abstract

The study of angiogenesis as a therapeutic target requires reliable in vivo assays that can provide physiologically relevant data. A murine in vivo Matrigel-based angiogenesis assay is presented here which includes the quantitative assessment of vascular-specific indicators of neovascularization. Matrigel containing 175 ng/ml bFGF is encapsulated in synthetic chambers which are implanted subcutaneously in C57/B16J mice. Ex vivo implants can be imaged to qualitatively view perfused vasculature within the chambers, or histologically processed to confirm the presence of vascular-specific tissue within the Matrigel. Viable cells are recovered from the excised chambers and quantified cytometrically using endothelial cell-specific markers CD34 and CD144, and for a marker of nucleated cells, Hoechst 33342.Thalidomide, 200 mg/kg/day, was tested using the assay and was found to inhibit angiogenesis by 46%. Angiogenesis inhibitors secreted by LL/M27 tumors were also characterized, where tumor-bearing mice showed a 73% inhibition of angiogenesis compared to tumor-free controls. Analysis of the number of nucleated cells in these samples failed to show a strong correlation with the number of endothelial cells, indicating that quantification of nonvascular-specific tissue in in vivo angiogenesis assays may not be sufficient.This new assay provides an objective, comprehensive determination of the vasculature-specific response of both endogenous and exogenous angiogenesis inhibitors in vivo, and also creates new opportunities for obtaining primary murine endothelial cells.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , ,