Article ID Journal Published Year Pages File Type
1996235 Molecular Cell 2014 15 Pages PDF
Abstract

•SIRT1 deacetylates TopBP1 to regulate metabolic and DNA damage checkpoints•Conformation of TopBP1 is regulated by SIRT1-mediated deacetylation•Decreased TopBP1 acetylation is important for metabolic checkpoint•Increased TopBP1 acetylation is important for replication checkpoint

SummaryDNA replication is executed only when cells have sufficient metabolic resources and undamaged DNA. Nutrient limitation and DNA damage cause a metabolic checkpoint and DNA damage checkpoint, respectively. Although SIRT1 activity is regulated by metabolic stress and DNA damage, its function in these stress-mediated checkpoints remains elusive. Here we report that the SIRT1-TopBP1 axis functions as a switch for both checkpoints. With glucose deprivation, SIRT1 is activated and deacetylates TopBP1, resulting in TopBP1-Treslin disassociation and DNA replication inhibition. Conversely, SIRT1 activity is inhibited under genotoxic stress, resulting in increased TopBP1 acetylation that is important for the TopBP1-Rad9 interaction and activation of the ATR-Chk1 pathway. Mechanistically, we showed that acetylation of TopBP1 changes the conformation of TopBP1, thereby facilitating its interaction with distinct partners in DNA replication and checkpoint activation. Taken together, our studies identify the SIRT1-TopBP1 axis as a key signaling mode in the regulation of the metabolic checkpoint and the DNA damage checkpoint.

Graphical AbstractFigure optionsDownload full-size imageDownload high-quality image (456 K)Download as PowerPoint slide

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , , , , , , , ,