Article ID Journal Published Year Pages File Type
1996367 Molecular Cell 2011 11 Pages PDF
Abstract

SummaryThe spindle assembly checkpoint (SAC) restricts mitotic exit to cells that have completed chromosome-microtubule attachment. Cdc20 is a bifunctional protein. In complex with SAC proteins Mad2, BubR1, and Bub3, Cdc20 forms the mitotic checkpoint complex (MCC), which binds the anaphase-promoting complex (APC/C) and inhibits its mitotic exit-promoting activity. When devoid of SAC proteins, Cdc20 serves as an APC/C coactivator and promotes mitotic exit. During mitotic arrest, Cdc20 is continuously degraded via ubiquitin-dependent proteolysis and resynthesized. It is believed that this cycle keeps the levels of Cdc20 below a threshold above which Cdc20 would promote mitotic exit. We report that p31comet, a checkpoint antagonist, is necessary for mitotic destabilization of Cdc20. p31comet depletion stabilizes the MCC, super-inhibits the APC/C, and delays mitotic exit, indicating that Cdc20 proteolysis in prometaphase opposes the checkpoint. Our studies reveal a homeostatic network in which checkpoint-sustaining and -repressing forces oppose each other during mitotic arrest and suggest ways for enhancing the sensitivity of cancer cells to antitubulin chemotherapeutics.

Graphical AbstractFigure optionsDownload full-size imageDownload high-quality image (140 K)Download as PowerPoint slideHighlights► The Cdc20 protein is unstable in mitosis ► The checkpoint antagonist p31comet mediates mitotic instability of Cdc20 ► Depletion of p31comet prevents checkpoint adaptation ► Inactivation of p31comet might improve therapeutic efficacy of taxanes

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , ,