Article ID Journal Published Year Pages File Type
1997220 Molecular Cell 2008 13 Pages PDF
Abstract

SummarySignal transducers and activators of transcription 1 (STAT1) is activated by tyrosine phosphorylation upon interferon-γ (IFN-γ) stimulation. Phosphorylated STAT1 translocates into nucleus to initiate the transcription of IFN-γ target genes that are important in mediating antiviral, antiproliferative, and immune response. The inactivation of STAT1 is mainly accomplished via tyrosine dephosphorylation by the nuclear isoform of T cell protein tyrosine phosphatase (TC45) in nucleus. Here we show that β-arrestin1 directly interacts with STAT1 in nucleus after IFN-γ treatment and accelerates STAT1 tyrosine dephosphorylation by recruiting TC45. Consequently, β-arrestin1 negatively regulates STAT1 transcription activity as well as the IFN-γ-induced gene transcription. Application of β-arrestin1 siRNA significantly enhances IFN-γ-induced antiviral response in vesicular stomatitis virus (VSV)-infected cells. Our results reveal that nuclear β-arrestin1, acting as a scaffold for the dephosphorylation of STAT1, is an essential negative regulator of IFN-γ signaling and participates in the IFN-γ-induced cellular antiviral response.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , , , , ,