Article ID Journal Published Year Pages File Type
1997462 Molecular Cell 2008 14 Pages PDF
Abstract

SummaryThe histone H2A variant H2AX is rapidly phosphorylated in response to DNA double-stranded breaks to produce γ-H2AX. γ-H2AX stabilizes cell-cycle checkpoint proteins and DNA repair factors at the break site. We previously found that the protein phosphatase PP2A is required to resolve γ-H2AX foci and complete DNA repair after exogenous DNA damage. Here we describe a three-protein PP4 phosphatase complex in mammalian cells, containing PP4C, PP4R2, and PP4R3β, that specifically dephosphorylates ATR-mediated γ-H2AX generated during DNA replication. PP4 efficiently dephosphorylates γ-H2AX within mononucleosomes in vitro and does not directly alter ATR or checkpoint kinase activity, suggesting that PP4 acts directly on γ-H2AX in cells. When the PP4 complex is silenced, repair of DNA replication-mediated breaks is inefficient, and cells are hypersensitive to DNA replication inhibitors, but not radiomimetic drugs. Therefore, γ-H2AX elimination at DNA damage foci is required for DNA damage repair, but accomplishing this task involves distinct phosphatases with potentially overlapping roles.

Keywords
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , , , , ,