Article ID Journal Published Year Pages File Type
1998438 Molecular Genetics and Metabolism 2011 8 Pages PDF
Abstract

ObjectiveThe aim was to investigate the genetic background of familial clustering of type 2 diabetes.Subjects and methodsWe recruited Japanese families with a 3-generation history of diabetes. Genome-wide linkage analysis was performed assuming an autosomal dominant model. Genes in the linkage region were computationally prioritized using Endeavour. We sequenced the candidate genes, and the frequencies of detected nucleotide changes were then examined in normoglycemic controls.ResultsTo exclude known genetic factors, we sequenced 6 maturity onset diabetes of the young (MODY) genes in 10 familial cases. Because we detected a MODY3 mutation HNF1A R583G in one case, we excluded this case from further investigation. Linkage analysis revealed a significant linkage region on 2p25-22 (LOD score = 3.47) for 4 families. The 23.6-Mb linkage region contained 106 genes. Those genes were scored by computational prioritization. Eleven genes, i.e., top 10% of 106 genes, were selected and considered primary candidates. Considering their functions, we eliminated 3 well characterized genes and finally sequenced 8 genes. GCKR ranked highly in the computational prioritization. Mutations (minor allele frequency less than 1%) in exons and the promoter of GCKR were found in index cases of the families (3 of 18 alleles) more frequently than in controls (0 of 36 alleles, P = 0.033). In one pedigree with 9 affected members, the mutation GCKR g.6859C>G was concordant with affection status. No mutation in other 7 genes that ranked highly in the prioritization was concordant with affection status in families.ConclusionsWe propose that GCKR is a susceptibility gene in Japanese families with clustered diabetes. The family based approach seems to be complementary with a large population study.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , , , , ,