Article ID Journal Published Year Pages File Type
1999111 Molecular Genetics and Metabolism 2008 7 Pages PDF
Abstract
In both siblings the heart muscle stored PAS-positive, proteinase-k resistant and partly diastase resistant granulo-filamentous material, simulating polyglucosan bodies. Glycogen branching enzyme activity, and phosphofructokinase enzyme activity, measured in skeletal muscle tissue and explanted heart tissue were all within the normal limits, however glycogen content was elevated. Furthermore, GBE1, PRKAG2, desmin, αβ-crystallin, ZASP, myotilin, and LAMP-2 gene sequencing revealed no mutation, excluding e.g. glycogen storage disease type 4 and desmin-related myofibrillar cardiomyopathies. In both patients the diagnosis of an idiopathic polysaccharidosis with progressive dilated cardiomyopathy was made, requiring heart transplantation at age 13 and 14, respectively. Both patients belong to an autosomal recessive group of biochemically and genetically unclassified severe vacuolar glycogen storage disease of the heart and skeletal muscle. Up to now unidentified glycogen synthesis or glycogen degradation pathways are supposed to contribute to this idiopathic glycogen storage disease.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , , ,