Article ID Journal Published Year Pages File Type
2006121 Peptides 2014 8 Pages PDF
Abstract

•Synthesis of Cy5-ghrelin(1–18) and des-acyl Cy5-ghrelin(1–18).•Imaging of GHS-R1a binding and internalization.•Cy5-ghrelin(1–18), but not des-acyl Cy5-ghrelin, binds to mouse heart tissue.•Cy5-ghrelin(1–18) can track GHS-R expression during development.•Onset of GHS-R expression may predict differentiation in P19-derived cardiomyocytes.

Ghrelin and its receptor, the growth hormone secretagogue receptor (GHS-R), are expressed in the heart, and may function to promote cardiomyocyte survival, differentiation and contractility. Previously, we had generated a truncated analog of ghrelin conjugated to fluorescein isothiocyanate for the purposes of determining GHS-R expression in situ. We now report the generation and characterization of a far-red ghrelin analog, [Dpr3(octanoyl), Lys19(Cy5)]ghrelin (1–19), and show that it can be used to image changes in GHS-R in developing cardiomyocytes. We also generated the des-acyl analog, des-acyl [Lys19(Cy5)]ghrelin (1–19) and characterized its binding to mouse heart sections. Receptor binding affinity of Cy5-ghrelin as measured in HEK293 cells overexpressing GHS-R1a was within an order of magnitude of that of fluorescein-ghrelin and native human ghrelin, while the des-acyl Cy5-ghrelin did not bind GHS-R1a. Live cell imaging in HEK293/GHS-R1a cells showed cell surface labeling that was displaced by excess ghrelin. Interestingly, Cy5-ghrelin, but not the des-acyl analog, showed concentration-dependent binding in mouse heart tissue sections. We then used Cy5-ghrelin to track GHS-R expression in P19-derived cardiomyocytes. Live cell imaging at different time points after DMSO-induced differentiation showed that GHS-R expression preceded that of the differentiation marker aMHC and tracked with the contractility marker SERCA 2a. Our far-red analog of ghrelin adds to the tools we are developing to map GHS-R in developing and diseased cardiac tissues.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , ,